Dissipative geometric phase and decoherence in parity-violating chiral molecules.
نویسندگان
چکیده
Within a generalized Langevin framework for open quantum systems, the cyclic evolution of a two-level system is analyzed in terms of the geometric phase extended to dissipative systems for Ohmic friction. This proposal is applied to the dynamics of chiral molecules where the tunneling and parity violating effects are competing. The effect of different system-bath coupling functions in the dissipated energy is shown to be crucial to understand the behavior of the geometric phase as well as the decoherence displayed by the corresponding interference patterns.
منابع مشابه
Detection of parity violation in chiral molecules by external tuning of electroweak optical activity
A proposal is made to measure the parity-violating energy difference between enantiomers of chiral molecules by modifying the dynamics of the two-state system using an external chiral field, in particular, circularly polarized light. The intrinsic molecular parity-violating energy could be compensated by this external chiral field, with the subsequent change in the optical activity. From the ob...
متن کاملGeometric phase of a qubit interacting with a squeezed-thermal bath
We study the geometric phase of an open two-level quantum system under the influence of a squeezed, thermal environment for both non-dissipative as well as dissipative system-environment interactions. In the non-dissipative case, squeezing is found to have a similar influence as temperature, of suppressing geometric phase, while in the dissipative case, squeezing tends to counteract the suppres...
متن کاملGeometric phase as a determinant of a qubit- environment coupling
We investigate the qubit geometric phase and its properties in dependence on the mechanism for decoherence of a qubit weakly coupled to its environment. We consider two sources of decoherence: dephasing coupling (without exchange of energy with environment) and dissipative coupling (with exchange of energy). Reduced dynamics of the qubit is studied in terms of the rigorous Davies Markovian quan...
متن کاملS-matrix spin and parity decoherence and damping of coherent nuclear rotation: quantum chaos in dissipative heavy-ion collisions?
We extend the statistical reaction with memory approach to study off-diagonal spin and parity S-matrix energy autocorrelation in dissipative heavy-ion collisions. It is suggested that S-matrix spin and parity decoherence results in (i) damping of the coherent nuclear rotation and (ii) is a manifestation of quantum chaos in dissipative heavy-ion collisions.
متن کاملA Langevin Canonical Approach to the Study of Quantum Stochastic Resonance in Chiral Molecules
A Langevin canonical framework for a chiral two-level system coupled to a bath of harmonic oscillators is used within a coupling scheme different from the well-known spin-boson model to study the quantum stochastic resonance for chiral molecules. This process refers to the amplification of the response to an external periodic signal at a certain value of the noise strength, being a cooperative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 136 17 شماره
صفحات -
تاریخ انتشار 2012